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SUMMARY 

The e f f ec t  of a c o n s t a n t  thermal  g r a d i e n t  on t h e  t r a n s v e r s e  

v i b r a t i o n a l  f r e q u e n c i e s  of  a s imply suppor ted  r e c t a n g u l a r  p l a t e  

i s  i n v e s t i g a t e d .  Bounds f o r  t h e  e i g e n f r e q u e n c i e s  a r e  obta ined  

for v a r i o u s  p l a t e  w i d t h - t o - l e n g t h  r a t i o s  a s  f u n c t i o n s  of a p a r a -  

meter r e l a t e d  t o  t h e  tempera ture  dependence of t h e  modulus of 

e l a s t i c i t y  of t h e  m a t e r i a l .  The upper bounds a r e  c a l c u l a t e d  by 

t h e  Rayleigh-Ritz  method and t h e  lower bounds by t h e  Bazley-Fox 

Second P r o j e c t i o n  method. I n  a l l  i n s t a n c e s ,  t h e  gap between t h e  

bounds over  t h e i r  average i s  less  than  one h a l f  o f  one p e r  c e n t .  
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NOMENCLATURE 

L a t i n  Symbols 

CL Length of t h e  p l a t e  

c; 

D i-4 

PL 

d i b  

E 

w 
L 

Lh 

P 
B 
r 

T 

uv 

- 
4 

Cons tan ts  of l i n e a r  combinat ion,  e q u a t i o n  (111-29) 

M a t r i x  e lements ,  e q u a t i o n  (111-18) 

Width of  t h e  p l a t e  

Matr ix  e lements ,  e q u a t i o n  (111-22) 

Cons tan ts  of  l i n e a r  combinat ion,  e q u a t i o n  (111-1) 

F l e x u a l  r i g i d i t y  v a r i a t i o n ,  e q u a t i o n  (11-4) 

Domain of t h e  o p e r a t o r  L 

M a t r i x  e lements  , e q u a t i o n  (111-23) 

Modulus of e l a s t i c i t y  

H i l b e r t  space 

D i f f e r e n t i a l  o p e r a t o r ,  e q u a t i o n  (11-14) 

S e l f - a d j o i n t  d i f f e r e n t i a l  o p e r a t o r ,  e q u a t i o n  (111-8) 

S e l f - a d j o i n t  p o s i t i v e  d e f i n i t e  o p e r a t o r ,  e q u a t i o n  (111-10) 

I n t e r m e d i a t e  o p e r a t o r ,  e q u a t i o n  (I11 -17) 

I n t e r m e d i a t e  o p e r a t o r ,  e q u a t i o n  (111-21) 

C i r c u l a r  f requency o f  motion, e q u a t i o n  (11-7) 

Independent e lements  of  DL’ 

Parameter , e q u a t i o n  (I1 -11) 

Temperature excess  above a g i v e n  r e f e r e n c e  

Fun c t i on 

Funct ion i n  DL 

D e f l e c t i o n  of  t h e  p l a t e  

Non dimensional  c o o r d i n a t e  

Actual c o o r d i n a t e  i n  t h e  plane of t h e  p l a t e  

Coordina te  p e r p e n d i c u l a r  t o  7 i n  the p l a n e  o f  t h e  p l a t e  
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Greek Symbols 

b, 

'd 

Parameter, equation (11-3) 

Slope of the var ia t ion  of E with T 

Posit ive number, equation (111-21) 

Kronecker de l t a  

Eigenvalue o f  the operator L 

Eigenvalue of the  operator L, equation (111-13) 

Eigenvalue o f  the  operator '- 

0 

; 'G 

Eigenfunction of the operator L 

Eigenfunction of the operator L,  equation (111-12) 

Eigenfunction of  the  operator L 

Poisson's r a t i o  

0 



I. INTRODUCTION 

The response of s t ruc tures  subjected t o  thermal environments i 

affected by the development of thermal s t r e s ses  and by t h  

t i on  of the  materials of construction. 

temperature on the modulus of e l a s t i c i t y  is f a r  from being negl igible  

t o  a i r c r a f t  and rocket designers, f o r  instance, because f o r  such mater ia ls  

as titanium al loys the modulus may be half  of its room temperature value 

a t  1 1 ~ 0 0 ~ ~ .  ('I* 

investigations (ly * y 3 y  4y 5, have shown t h a t  a l i n e a r  re la t ionship between 

Young's modulus and temperature provides a good cor re la t ion  for  most 

The problem of the e f f e c t  of 

Other materials a re  a l so  affected,  and experimental 

engineering materials.  Thus, in  the presence of  steady thermal gradients , 

the  e l a s t i c  coef f ic ien ts  of homogeneous mater ia ls  become functions of the 

space variables.  The determination of vibpational charac te r i s t ics  o f  

continuous e l a s t i c  systems must then be based on non-homogeneous e l a s t i c  

theory. 

Although the  problem has long bgen recognized, few solutions appear 

. i n  the l i t e r a t u r e .  In pa r t i cu la r ,  few attempts have been made a t  the 

determination of natural  frequencies of p l a t e s  with var iable  f lexura l  

r i g i d i t y .  The ex is t ing  solutions are  usually concerned with p l a t e s  of 

variable  thickness ('"') , but not with material-induced var iable  r i g i d i t i e s .  

The object of t h i s  study is t o  determine the  e f f e c t  of the non- 

homogeneity caused by a thermal gradient on the na tura l  frequencies of 

a free,simply supported p l a t e  of uniform thickness. 

d i s t r ibu t ion  is considered in  one direct ion.  Any v iscoe las t ic  e f f ec t s  

a r e  considered negl igible  i n  comparison with the  induced non-homogeneity 

A steady temperature 

*Parenthetical references placed superior t o  the l i n e  of the t e x t  r e f e r  
t o  the bibliography. 
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ef fec ts .  Bounds f o r  the eigenfrequencies a re  computed by the  Rayleigh- 

Ri tz  method and the Bazley-Fox Second Projection method a s  functions 

of a parameter associated with the severi ty  of the thermal gradient and 

the temperature dependence of the mater ia l ' s  modulus of e l a s t i c i t y .  
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11. FORMULATION OF THE PROBLEM 

Consider a rectangular p l a t e  of uniform thickness h,  length q, 

and width b y  subjected t o  a steady one-dimensional temperature d is t r ibu-  

t i on  T=To(\-X) where T denotes the temperature excess above the 

reference temperature a t  any point x, T 

above the  reference temperature a t  the end x=a , and %= ?/& . 
For most engineering mater ia ls ,  the  temperature dependence of the  

denotes the temperature excess 
0 

modulus o f  e l a s t i c i t y  is given by a r e l a t ion  of the type 

f (T) = E, ( \ -  pr) (11-1) 

where 

€ 1  

T 
p is the slope of the var ia t ion of E with T . 

is  the value of the modulus a t  some reference temperature 

is the  temperature excess above the  reference temperature 

Taking a s  the reference temperature, the temperature a t  the end 

of the p l a t e  x = a,  the modulus var ia t ion becomes 

E =  E, \ l - * ( \ - K ) \  

where the  parameter o( is defined by 

( o , < . c a )  
fA= f r o  

The f lexura l  r i g i d i t y  of the  p l a t e  can now be wri t ten a s  

(11- 2) 

(11-3) 

(11-4) 

where 

(11-5) 
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The known d i f f e r e n t i a l  equation f o r  the def lect ion 

vibrat ing p l a t e  with f l exura l  r i g i d i t y  bcs,$) is 

z[G,% ii) of a 

- 
For 'harmonic vibrat ions,  W has the form 

iG(E,%,t)= w ( E , j )  A q 3 t  

where p is the c i r cu la r  frequency of the motion. 

(11-6) 

- , i . e .  t he  search f o r  solut ions 
and 8 Separation of the  var iables  % 

of the form 

(11-7) 

yields ,  f o r  simple supports, 

Yn.- A* &%- 

b 

4 :  and the d i f f e r e n t i a l  equation f o r  

(11-8) 

(11-9) 

where 

find. y"= - 
b 

(I 1-11) 

(I I- 12) and 
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The boundary conditions f o r  simple supports a re  

(11-13) 

The problem of the determination of the  p l a t e  natural  frequencies cons is t s  

now of the  solut ion of the  eigenvalue problem corresponding t o  equations 

(11-10) and (11-13). 

The d i f f e ren t i a l  operator w i l l  be represented by L ,  i . e .  

L 4  =rXh (11-13) 

Consider the  Hilber t  space H of r e a l  square integrable functions defined 

on i o ,  \I , with the inner product (LC,V) defined by 

\ 

(U.,v) = \ iAv h4 (I I- 1 5) 
0 

f o r  any two functions u and v in  H. 

The domain of  L i n  H,  DL, consis ts  o f  the  s e t  of  functions of c l a s s  C 

sa t i s fy ing  the boundary conditions (11-13). A s  in tegrat ion by p a r t  shows, 

L is se l f  adjoint  over i t s  domain, i . e .  

4 

f o r  every p a i r  

Since over DL, 

(LU,+ (u., L V )  

u and v i n  DL. 

L is pos i t ive  de f in i t e ,  i . e .  

(I 1-16) 

(11- 17) 

with the equality s ign  holding only f o r  u = 0 ,  the  eigenvalues a re  
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known t o  be pos i t ive  and t o  tend t o  in f in i ty  with no f i n i t e  l i m i t  po in t .  

They a r e  assumed t o  be ordered i n  increasing order of magnitude 

0 < 1, < k,,c 51, ( I f  (11-18) 

and the  corresponding elgenfunctions 

t o  s a t i s f y  

a r e  assumed t o  be normalized 0 

In t h e  following sec t ion ,  t he  method of solut ion of t he  eigenvalue 

problem is described. 

(11-19) 
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111. METHOD OF SOLUTION 

Since exact solutions t o  equation (11-10) a r e  not known, approximate 

The number of techniques t o  estimate solut ions must therefore  be sought. 

eigenvalues of  se l f -ad jo in t  operators t h a t  have appeared i n  the  l i t e r a t u r e  

is enormous. (See f o r  instance references 12,13,14,15). In  t h i s  study, 

the Rayleigh-Ritz method was used t o  ca lcu la te  upper bounds t o  the desired 

eigenvalues, and the  Bazley-Fox Second Projection method t o  compute lower 

bounds. The theore t ica l  foundations f o r  these methods have appeared i n  

the  l i t e r a t u r e ,  and consequently only the d e t a i l s  needed f o r  t h e i r  applica- 

t i on  t o  the problem on hand are  presented. For mathematical proofs, the 

reader is re fer red  t o  references 1 2  through 1 6 .  

a.  Upper Bounds 

The basic idea of the  Rayleigh-Ritz method cons is t s  i n  determining 

the s ta t ionary values of the Rayleigh quotient,  cLu,Lt>/ (U~u)  

not  over a l l  admissible functions u , but only over the  l i n e a r  manifold 

spanned by n l i nea r ly  

boundary conditions of 

f inding the  functions 

independent functions k; sa t i s fy ing  the prescribed 

the  operator L. The problem then cons is t s  i n  

u of the form 

H 
bc.=: ciu; 

i:\ 

i .e.  in  finding the  constants C;. , making the  Rayleigh quat ient  

s ta t ionary.  The r e s u l t  is the general matrix eigenvalue problem 

(I  11-1) 

(111-2) 

Since the c l a s s  of admissible functions i s  r e s t r i c t e d  t o  t he  l i n e a r  

manifold, it follows t h a t  the eigenvalues 
-.. 

Ai are  upper bounds f o r  
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those of L, i .e .  

(I1 I- 3) 

Furt-hermore, it follows t h a t  a s  /L increases the  upper bound 

improved, o r  a t  l e a s t  not worsened. 

For the  problem under consideration, these functions were chosen t o  be 

which sa t i s fy  the  boundary conditions (11-13), and a re  such t h a t  

(111-4) 

Evaluation of the  inner products needed in  equation (111-2) yie lgs  

These expressions were subst i tuted in equation (111-2), and the  

r e su l t i ng  matrix eigenvalue problem was solved numerically f o r  various 

vaLues of t he  parameter b( and of the  length-to-width r a t i o ,  a b ,  f o r  

1 5  x 1 5  matrix s izes .  The improvement i n  the  upper bounds with increasing 

matrix s i z e  is i l l u s t r a t e d  i n  Table 1 where the r e s u l t s  correspond t o  

the  value of e = O.So. 
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b. Lower Bounds 

The computation of lower bounds presents considerably more d i f f i -  

cu l t i e s .  The out l ine  of the Bazley-Fox Second Projection method is 

presented here. For d e t a i l s  of  proofs o r  construction of the  needed 

operators, the reader is re fer red  to  reference 1 6 .  J 

. D  i' 
Consider the operator L as the  sum of two operators L and 1, 

such t h a t  
I 

(III- 7) 1,= L" + L 

where t-' is the  self-adjoint  operator 

with boundary conditions 

and L' is the  operator 

with the boundary conditions given by equation (111-9). 

eas i ly  shown t o  be se l f -ad jo in t  and pos i t ive  de f in i t e .  

The eigenvalue problem for Lo , namely 

L' can be 

L y z  y f  

is readi ly  solvable. The normalized eigenfunctions a re  

(I II- 8) 

(111-9) 

(I 11-10) 

( I  I I- 11) 

(111-12) 
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and the corresponding eigenvalues a re  

Comparison of the Rayleigh quotients f o r  L and Lo indicates  t h a t  

(LQ*t ,u)  G ( L u , u )  
f o r  a l l  functions u in  the  coinciding domains of L and Lo. 

Consequently, t h e i r  ordered eigenvalues s a t i s f y  the inequal i t ies  

(I 11-13) 

(I I I - 1 4) 

(111-15) 

h O  
The lower bounds ,h4 are ,  however, qu i te  remote from the  desired 

eigenvalues. To improve them, intermediate operators Lk a r e  

constructed so  t h a t  they have the same domains as  Lo and t h e i r  eigen- 

values s a t i s f y  the inequal i t ies  

Considering k l i nea r ly  independent 

A T i ;  2 ,  I (I 11- 16) 2.. . 3 ; .  1 

vectors belonging t o  the domain of 

L' , the k-th intermediate operator is given by 

where the elements a re  the e n t r i e s  of the following matrix 

Having chosen the  l i nea r ly  independent vectors as  

I .  

pi bAO = E h w  4' *\ Y 
the  inner products take the forms 

(111-17) 

(I 11-18) 

(111-19) 
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(I 11- 20) 

where the  expressions f o r  [ ui) a re  given by equation 

(111-6). 

To avoid the d i f f i c u l t i e s  associated with the  solut ion of the  

(16) haye introduced smaller eigenvalue problem f o r  L , Bazley and Fox 

operators f o r  which the  problem reduces t o  a Ejn i te  l i n e a r  algebraic 

problem. 

k 

These operators a re  denoted by 1, ti h . They a re  given by 

(I1 I- 21) 

where v is a pos i t ive  number whose optimum value f o r  the  determina- 

. Since is 

not  known, must be chosen f rom an estimate of  it, which f o r  t h i s  prob- 

lem was taken a s  

bound f o r  

- 
)id . This choice, therefore,  tends t o  give a lower 

3; s l i g h t l y  smaller than the value obtainable from the 

optimm 'd . 
The matrix [ k i i l  is the  inverse of the  matrix with elements 

where ~~~~~ is  the matrix inverse t o  t h a t  with elements 

Its evaluation requires the following 

(111-23). 

.inner products, i n  addition t o  

those given in  equation (111-201: 
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fo( 4 (111-24) 

can be shown t o  s a t i s f y  the inequal i t ies  
0 

The eigenvalues of t 

The solut ion of the eigenvalue problem 

i s  now accomplished as follows: 
8 

1. If ph is orthogonal t o  the span of \ d;)," ) ,.:, , 

then the  problem reduces t o  

which has solut ion 

(111- 2 5) 

(111- 27) 

(I1 I- 28) 



1 3 .  

R 
2. If is in  the span of , it can be 

wr i t ten  a s  

(I 11- 29) 

zn: ! 

which upon subs t i tu t ion  in  equation (111-26) and consideration o f  the 

l i n e a r  independence of  the eigenfunctions of Lo y ie lds  the  matrix 

eigenvalue problem 

are  then obtained by ordering the r e s u l t s  \ Lh The eigenvalues of L. 

of  equations (111-28) and (111-30). 

Computations were performed f o r  various values of the  parameter 01, 
\ ‘  

and of the length-to-width r a t i o ,  a /b ,  f o r  

presented in  Table 2 i l l u s t r a t e  the  improvement in  the lower bounds 

as  the s i zes  of the intermediate operators a re  increased. The r e s u l t s  

shown correspond t o  Oca 0,50, 

k-, k,=\$. The r e s u l t s  
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I V .  RESULTS AND D I S C U S S I O N  

The following procedure was used i n  the calculat ion of the eigen- 

frequencies of t he  p l a t e  subjected t o  a thermal gradient. 

given a h  r a t i o ,  and f o r  a given value of , the  bounds f o r  the 

eigenvalues 'r i n  equation (11-10) were computed f o r  f ixed  values 

of the parameter r defined in  equation (11-11). They were obtained 

by l e t t i n g  the  order %,, take the d i sc re t e  values 1 through 1 0  success- 

ively. 

the  lower bounds were calculated f o r  intermediate operators with 

For a 

The upper bounds were computed using 15  x 1 5  matrix s i zes  and 

! 
i2:  ll: ic . Consequently, a sequence of  eigenvalue problems (one 

f o r  each value of r) were solved t o  take in to  account the  possible 

combinations of mode shapes in  the x- and y-directions.  For  a given 

value of the a /b  r a t i o  and a given value of t4 , the  r e s u l t s  were 

arranged in  two matrices, one f o r  the  upper bounds and one f o r  the lower 

bounds, giving the  approximations t o  the eigenvalues of t he  p l a t e  f o r  

the  order of the  mode shapes in  the  x- and y-directions. It was then 

possible t o  order by inspection the eigenfrequencies i n  ascending orders 

of magnitude. 

In  a l l  instances, t he  Rayleigh-Ritz method coupled with the Bazley- 

Fox Second Projection method yielded excel lent  r e s u l t s  since the  gaps 

between the bounds over t he i r  average remained l e s s  than one half  of one 

per cent. 

The e f f e c t  of the temperature gradient on the  f i rq t  three 

eigenvalues of t he  p l a t e s  i s  i l l u s t r a t e d  i n  Figures 1 through 3 f o r  

values of the a/b r a t i o  equal t o  0.5, 1 .0 ,  1 .5 ,  and 2 .0 .  The r a t i o  

of each e igenvaheto  the  corresponding eigenvalueof the p l a t e  a t  the 
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reference temperature i s  presented a s  a function of the a h  r a t i o  and of 

the parameter d which represents the  severi ty  of the thermal gradient 

and of the  temperature dependence of the  p l a t e  m 

Comparison between the  var ia t ions  of the  three eigenvalues indicates  

t h a t  the  e f f e c t  of the  thermal gradient depresses the  higher harmonics 

lus  of e l a s t  

f a s t e r  than the  fundamental. This conclusion appears t o  be va l id  f o r  

harmonics of higher orders too. 

O f  pa r t i cu la r  i n t e r e s t  is the  phenomenon i l l u s t r a t e d  i n  Figure 3 
5 

by the var ia t ion  of the th i rd  eigenvalue f o r  the  square p l a t e .  

A s  shown on the figure, t he  t h i r d  eigenvalue f o r  a/b = 1 . 0  is  

much lower than the thf rd  eigenvalue corresponding t o  the  other length- 

to-width r a t i o s .  Furthermore, the  point  1 5  / h, = 1.00 is a 
d.=o 

poin-t: of discont inui ty .  The explanation f o r  t h i s  phenomenon is  a s  

follows: f o r  t he  p l a t e  a t  the reference temperature, i . e .  f o r  d. = 0.0 ,  

the second eigenvalue corresponds ind i f fe ren t ly  t o  the combination of the 

first mode i n  the  x-direction and the  second mode in  the y-direction, 

o r  t o  t he  combination of the second mode in  the x-direction and the first 

mode in  the  y-direction. For instance, f o r  o( = 0 .0  and a h  = 1 . 0 ,  

The t h i r d  eigenvalue in  t h i s  case corresponds t o  

the combination of t he  second modes in  the  x- and y-directions.  I t  

has the value 1, = 6234.181. 

however, t he  r i g i d i t y  of the  p l a t e  i n  the  x-direction is weakened. 

Consequently, the second eigenvalue of the reference p l a t e  "branches o f f "  

1, = 2435.227. 

In the presence of the thermal gradient,  

t o  y ie ld  two frequencies: 

x-direction with t h e  second mode i n  the y-direction y i e lds  , while 

the combination of the second mode i n  the x-direction with the  first mode 

i n  the y-direction y i e lds  31, - 

the  combination of the  first mode i n  the  

For instance, f o r  a/b = 1 . 0 ,  = 0.1, 



1 6 .  

= 2312.092 and = 2312.318. Hence the t h i r d  eigenvalue i s  

This qu i te  remote f r o m  the  t h i r d  eigenvalue of the reference p l a t e .  

phenomenon is a l so  exhibited by p l a t e s  with other length-to-width r a t i o s  

f o r  harmonics of orders higher than three.  

The r e s u l t s  presented here apply only t o  a l i n e a r  temperature 

d is t r ibu t ion .  In themselves, they should be of value t o  designers of 

equipment subjected t o  thermal gradients.  Furthermore, s ince in  many 

instances the temperature d i s t r ibu t ion  Qan be approximated by a l i n e a r  

var ia t ion,  they can be useful  in  estimating the  e f f e c t  of other gradients 

on the natural  frequencies of simply supported p l a t e s .  

The method of solut ion can be used f o r  other temperature var ia t ions.  

The main d i f f i c u l t y  in  the  lower bounds method res ides  in  s p l i t t i n g  the  

d i f f e r e n t i a l  operator s o  t h a t  a convenient base problem r e s u l t s .  
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Table 3 - Upper and Lower Bounds f o r  the Eigenvalues of a Rectangular 
P l a t e  wi th  Linear  Modulus Var ia t ion  

= 0.00 

a h  Order Upper Bounds Lower Bounds 

1 152.20 152.20 
0.5 2 389.64 389.64 

3 1028.88 1028.88 

1 389.64 389 (. 64 
1.0 2 2435.23 2435.23 

3 6234.18 6234.18 

1 1028.88 1028.88 
1.5 2 3805.04 3805.04 

3 9740.91 9740.91 

1 2435.23 2435.23 
2 .o 2 6234.18 6234.18 

3 16 ,46 2.13 1 6 ,  462.13 

B(, = 0.10 

a/b Order Upper Bounds Lower Bounds 

1 144.53 144.38 
0 .5  2 369.99 369.34 

3 976.95 976.14 

1 369.99 369.34 
1.0 2 2312.09 2311.81 

3 2312.32 2312.10 

1 976.95 976.14 
1 .5  2 3613.06 3613.02 

3 9 245.68 9244.75 

1 2312.09 2311.81 
2.0 2 5919 -81 5919 * 59 

3 15,631.10 15,630.95 
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o( = 0.20 

a/b O r d e r  U p p e r  Rounds L o w e r  Rounds 

1 136.74 136.50 
0.5 2 349.99 349.45 

3 923 - 9 5  923.20 

1 349 * 99 349.45 
1.0 2 2185.90 2185 -63  

3 2186.85 2186.59 

1 923.94 923.20 
1.5 2 3417.23 3417.12 

3 8732.24 8731.36 

1 2185.90 2185.6 3 
2 .o 2 5599.50 5599.36 

3 14,782.41 14,782.23 

B( = 0.30 

a/b O r d e r  Upper Bounds L o w e r  Bounds 

1 128.79 128.67 
0.5 2 329.58 329.07 

3 869 -65  868.91  

1 329.58 329 -07  
1.0 2 2056.67 2055.81 

3 2058.35 2058 -09  

868 - 9 1  1 869.65 
1.5 2 3216.80 3216.70 

3 8197.19 8196.31 

1 2056.07 2055.81 
2.0 2 5272.12 5271.94 

3 13,912.65 13,912.51 
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b(, = 0.40 

a/b Order Upper Bounds Lower Bounds 

1 120  -66 120.52 
0.5 2 308.64 308.15 

3 813.79 813.06 

1 308.64 308.15 
1 .0  2 19  21.81 19 21.59 

3 1926.13 1925.91 

1 813.79 813.06 
1.5 2 3010.77 3010.73 

3 7636 -10 7635.33 

1 1921.81 19 21.59 
2.0 2 4936.10 4935.88 

3 13,017.19 13,016.99 

% = 0.50 

a/b Order Upper Bounds Lower Bounds 

112.15  1 112.30 
0 -5  2 287.07 286.62 

3 755.98 755.29 

1 287.07 286.62 
1 .0  2 1782.02 1781.82 

3 1789.27 1789.09 

1 755.98 755.29 
1.5 2 2797.73 2797.66 

3 7042.87 7042.21 

1 1782.02 1781.82 
2.0 2 4589.26 4589.15 

3 12,089.49 12,089.25 
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o( = 0.60 

a/b Order Upper Rounds Lower Bounds 

0 .5  2 264.66 
1 103.64 103.50 

264.20 
3 695.64 695.02 

1 264.66 264.20 
1.0 2 1635.08 1634.92 

3 1646.36 1646.18 

1.5 
1 
2 
3 

695.64 
2575.56 
6408.79 

695.02 
2575.47 
6408.13 

2 .o 
1 
2 

1635.08 
4228.28 

1634.92 
4228.08 

3 11,119.66 11,119.29 

% =  0.70 

a/b Order Upper Bounds Lower Bounds 

1 94.57 94.46 
0.5 2 241.13 240.69 

3 631.85 631.27 

1 241.13 240.69 
1 .0  2 1478.40 1478.23 

3 149 5.15 149 4 . 9 1  

1 631.85 631.27 
1.5 2 2340.80 2340.67 

3 5720.39 5719.75 

1 1478. 40 147 8.23 
2 .o 2 3847.77 3847 * 54 

3 10,091.52 10,090.82 
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o ( =  0.80 

a/b Order *. Upper Bounds Lower Bounds 

1 84.92 84.78 
0.5 2 215.93 215.52 

3 562.96 562.42 

1.0 
1 
2 

215.93 
1307.29 

215.52 
1307.11 

3 1331.47 1331.19 

1 562.96 562.42 
1.5 2 2087.13 2086 -89 

3 4954.18 4953.50 

1 1307.29 1307.11 
2.0 2 3437.71 3437.35 

3 8975.01 8973.34 

= 0.90 

a/b Order Upper Bounds Lower Bounds 

1 74.26 74.13 
0.5 2 187.90 187.52 

3 485.32 484.78 

1 187.90 187.52 
1 .0  2 1111.40 1111.06 

3 1145.89 1145.16 

1 485.32 484.78 
1.5 2 1799.96 1799.05 

3 40 58.9 8 4057.33 

1 1111.40 1111.06 
2.0 2 2974.86 2973.43 

3 7699.54 7691.90 - 
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o( = 1.00 

a/b Order Upper Bounds Lower Bounds 

1 61.11 60.9F 
0.5 2 152.73 152.33 

3 385.11 384.51 

1 152.73 152.33 
1 .0  2 850.67 850.25 

3 900.23 899.62 

1 385.11 384.51 
1.5 2 1419.57 1418.62 

3 2833.56 2381.78 

1 850.67 850.25 
2.0 2 2361.99 2360.38 

3 5969.26 5961.03 


